Abstract Submitted for the PSF20 Meeting of The American Physical Society

Channel Competition in Single Ionization of CS^+ by Intense Laser Pulses¹ TIANA TOWNSEND, E. WELLS, Department of Physics, Augustana University, Sioux Falls, SD 57197 USA, BETHANY JOCHIM, T. SEVERT, K.D. CARNES, I. BEN-ITZHAK, J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506 USA — Employing a coincidence three-dimensional momentum imaging technique, we investigate the ultrafast, intense laser-induced ionization of CS^+ . The analysis presented here focuses on the intensity-dependent branching ratio from 3×10^{14} to 3×10^{16} W/cm². The chargesymmetric $C^+ + S^+$ channel is dominant at all measured intensities, followed by CS^{2+} and then $C + S^{2+}$, while $C^{2+} + S$ is not observed. The branching ratio measurement is assisted by *in situ* determination of the detection efficiency of all the product channels.

¹M. Zohrabi, K.J. Betsch, Ben Berry, U. Ablikim, and A.M. Summers also participated in the experiment. Augustana University personnel are supported by NSF grant PHYS-2011864. J.R. Macdonald Laboratory personnel and equipment are supported by U.S. Department of Energy grant #DE-FG02-86ER13491.

> Eric Wells Augustana University

Date submitted: 30 Oct 2020

Electronic form version 1.4