Half-life measurements of several states in 95,97,100,104Zr, 106Mo and 148,150Ce J.K. HWANG, A.V. RAMAYYA, J.H. HAMILTON, Vanderbilt Univ., Y.X. LUO, Vanderbilt Univ./LBNL, A.V. DANIEL, G.M. TER-AKOPYAN, JINR, J.D. COLE, INEL, S.J. ZHU, Tsinghua Univ. — Half-lives ($T_{1/2}$) of several states in 95,97,100,104Zr, 106Mo and 148,150Ce which decay by delayed γ transitions, were determined from time-gated triple γ coincidence method. Transition energy dependent effects such as time-walks, time-jitters, amplitude-walks and possible timing fluctuation of Ge detectors that contribute to the width of time window are taken into consideration. It is shown that the normalized triple γ coincidence counts (the inverse of N1) of two prompt cascades with the similar transition energies are similar. Also, it is observed that the real triple γ coincidence counts in the prompt cascades change systematically along with the change of the coincidence time-window and three transition energies. The half-lives of the states in the delayed cascades are determined by using the prompt cascades with the similar transition energies as delayed cascades. The half-life of 2^+ state in 104Zr is measured to be 1.9(2) nsec. The obtained B(E2;0$^+ \rightarrow 2^+ $(e2b2) value and quadrupole deformation (β_2) are 2.0(2) (e2b2) and 0.47(5). It is reported that, except 102Sr, 104Zr(β_2=0.47(5)) has the most deformed 2^+ state among medium and heavy even-even nuclei.

Jae-Kwang Hwang
Vanderbilt University

Date submitted: 02 Aug 2005

Electronic form version 1.4