Investigation of the kinetic energy change in optimally-doped and overdoped YBa$_2$Cu$_3$O$_{7-\delta}$

MINGHAN CHEN, D.B. TANNER, Department of Physics, University of Florida, Gainesville FL USA, G. HAMMERL, J. MANNHART, Experimentalphysik VI, Center for Electronic Correlations and Magnetism, Institute of Physics, Augsburg, Germany — Optimally-doped and overdoped thin films of the high temperature superconductor YBa$_2$Cu$_3$O$_{7-\delta}$ (Y-123) with $T_c = 90$ K and 79 K, respectively, have been investigated by infrared spectroscopy. The films were highly ab-plane-oriented. In the normal state, the charge-transfer band weight is found to decrease further in the overdoped sample. This indicates the spectral weight of charge transfer band is transferred to the mid-infrared region, just as in the case of increasing doping in the under doped regime. Below T_c, the superfluid condensation is found in both optimally-doped and overdoped samples. In the optimally-doped sample, the kinetic energy does not change significantly. However, in comparison to the optimally-doped sample, the overdoped sample shows much smaller superfluid (or condensate) density. This result indicates it is difficult to decide the kinetic energy change in the overdoped samples.

1Supported by the National Science Foundation, DMR-0305043, and the Department of Energy, DE-AI02-03ER46070.

Minghan Chen
Department of Physics, University of Florida