0+ states of the 12C nucleus: Faddeev calculation in configurations space

BRANISLAV VLAHOVIC, North Carolina Central University, IGOR FILIKHIN, VLADIMIR SUSLOV — The α-cluster model and Faddeev equations in configuration space are applied to study the 12C nucleus. The model includes the Ali-Bodmer nuclear potential [1], attractive three-body potential, and takes into account the Coulomb interaction. An s-wave model [2] is adapted and parameters of the three-body potential are chosen to describe the first two 0^+ levels of 12C. The value of the range parameter of the potential is adjusted to reproduce the position of diffraction minimum for the elastic form factor of 12C. The model assumes a strong distortion of the charge density of α clusters inside the 12C nucleus. It was found that the most probable configuration of the α-clusters in the 0^+_1 state corresponds to an equilateral triangle with sides as large as 3.5 fm and in the 0^+_2 state to a linear chain with the values of 2.9 fm and 13.1 fm for each link. Having calculated low-lying levels of 12C, we found that the contributions of higher partial waves of nuclear interaction to the energy of 3α-system are unnaturally large and some states turn to be overbound. Upon applying the method [3] based on the Pade approximants we’ve got a satisfactory description the 0^+_3 and 0^+_4 states [4]. Additional 0^+ broad resonance obtained in [3] was not found. 1. S. Ali, A. R. Bodmer, Nucl. Phys. 80, 99 (1966). 2. Z. Papp, et al. Few-Body Systems 30, 31 (2001). 3. C. Kurokawa and K. Kato, Phys. Rev. C76, 021301-1 (2005). 4. http://www.tunl.duke.edu/nucldata/.