Abstract Submitted for the SES05 Meeting of The American Physical Society

Multiple frequency MR implantable coil system for *in vivo* studies of bioartificial pancreas at 11.1 T N.A. VOLLAND, Dept. of Biomed Eng., C.A. TAYLOR, Dept. of Elect Eng., T.H. MARECI, Depts. of Biochem & Mol-Biol, and Physics, I. CONSTANTINIDIS, Div of Endocrinology, Dept of Medicine, National High Magnetic Field Laboratory, U Florida, Gainesville — Bioartificial pancreatic macroconstructs may deliver insulin secreting cells for blood glucose regulation. Non-invasively monitoring *in vivo* is key to understanding its function and efficacy. Initial NMR imaging & spectroscopy showed great promise with surface coils at 4.7 T. Sensitivity limitations restrict measurements so we developed an inductively-coupled multiple-frequency coil system for 11.1 T. This system contains an implantable loop-gap resonator, inductively coupled to an external coil, resonating at 471 MHz for ¹H and optimized for ³¹P at 191 MHz. This system has a sensitivity gain of $\sim 5.2 \ (\pm 2.3)$ over a surface coil. Images were acquired for both frequencies. Ongoing work focuses on: 1) a receive-only coil system, 2) adding a third resonance (443 MHz for 19 F), and 3) developing coating material and embedding the implantable coil in the macroconstruct. This system will be characterized in vitro prior to its use in vivo.

> Paul Avery University of Florida

Date submitted: 09 Aug 2005

Electronic form version 1.4