Abstract Submitted for the SES05 Meeting of The American Physical Society

Properties of (Ba_xSr_{1-x}) FeO₃ thin films and multilayers CHARLEE CALLENDER, DAVID NORTON, ARTHUR HEBARD, JOSH KELLY, RITESH DAS, University of Florida, MATERIALS SCIENCE & ENGINEERING COLLABORATION, PHYSICS COLLABORATION — (Ba_xSr_{1-x}) FeO₃ is an interesting perovskite solid solution. SrFeO₃ is antiferromagnetic, while BaFeO₃ is ferromagnetic with a Curie temperature of 160 K. The primary effect of Sr substitution into BaFeO₃ is a decrease in lattice parameter with no change in formal valence. Yet, the transport and magnetic properties of the two end compounds are significantly different. In this project, we are investigating the properties of the (Ba,Sr)FeO₃ epitaxial thin films and multilayers. The (Ba_xSr_{1-x}) FeO₃ films were grown via pulsed laser deposition. The films were characterized by X-ray diffraction, Superconducting Quantum Interference Device (SQUID) magnetometry, and atomic force microscopy.

David Norton University of Florida

Date submitted: 09 Aug 2005 Electronic form version 1.4