SES05-2005-020015

Abstract for an Invited Paper for the SES05 Meeting of the American Physical Society

Surface plasmon mediated imaging at the nanoscale using metal lenses PIETER KIK, College of Optics and Photonics: CREOL and FPCE, 4000 University Boulevard, Orlando, FL

It has been proposed that a thin metal film can act as a near-field lens with sub-diffraction limit resolution. Near-field focusing with such metal lenses relies on the excitation of localized surface plasmons on a metal-dielectric interface in close proximity to a nanoscale light source. These plasmonic-lenses could have applications in near-field lithography and optical data storage. This presenation will focus on near-field scanning optical microscopy (NSOM) experiments that directly demonstrate frequency-dependent near-field focusing with planar metal films. In these studies the lens structure consists of a free-standing bilayer of 50nm Au and 50nm Si₃N₄, while the nanoscale object is formed by the tip of a near-field scanning optical microscope. The corresponding image behind the metal lens is detected via a Pt nanoparticle that acts as a near-field scatterer. We will show that low frequency operation ($\lambda > ~600$ nm) of these lenses results in the excitation of extended surface plasmon waves, whereas operation at the localized plasmon frequency ($\lambda ~ ~550$ nm) results in a narrowed field distribution in the image plane, as predicted by theory.