Abstract Submitted for the SES06 Meeting of The American Physical Society

Mid-Infrared Emission from Sensitized Pr^{3+} in the Low Phonon-Energy Host KPb₂Cl₅ ALTHEA BLUIETT, Elizabeth City State University, EI BROWN, UWE HOMMERICH, Hampton University, SUDHIR TRIVEDI, Brimrose Corporation of America — Energy transfer from Yb³⁺ to Pr³⁺ was explored in the low-phonon energy host KPb₂Cl₅for 4-5 μ m solid-state laser development. The incorporation of two rare-earth (RE) ions in a low-phonon energy host is expected to increase critical laser parameters such as pump efficiency and emission intensity through energy transfer. Moreover, incorporating the RE ions in a low phonon-energy host is expected to reduce the detrimental effects of non-radiative decay through multi-phonon emission. Evidence of efficient energy transfer was observed in Yb³⁺ \rightarrow Pr³⁺ under 980 nm laser excitation This was accomplished by exciting the ³H₄ \rightarrow ¹G₄ absorption transition of Pr³⁺ at 980 nm in singly doped Pr: KPb₂Cl₅ and the ²F_{7/2} \rightarrow ²F_{9/2} absorption transition of Yb³⁺ at the same excitation wavelength in the Pr, Yb: KPb₂Cl₅ sample. The integrated emission intensity of Pr³⁺ in the co-doped sample is nearly 11 times larger relative to Pr³⁺ in the singly doped sample. This suggests that energy transfer between Yb and Pr was successful.

> Ei Brown Hampton University

Date submitted: 17 Oct 2006

Electronic form version 1.4