Abstract Submitted for the SES06 Meeting of The American Physical Society

Identification of levels in ¹⁴⁴Cs E.F. JONES, P.M. GORE, Y.X. LUO, J.H. HAMILTON, A.V. RAMAYYA, J.K. HWANG, H.L. CROWELL, K. LI, C.T. GOODIN, Dept. of Physics, Vanderbilt Univ., Nashville, Tennessee 37235, U.S.A., J.O. RASMUSSEN, Lawrence Berkeley National Laboratory, Berkeley, California 94720, U.S.A., S.J. ZHU, Dept. of Physics, Tsinghua Univ., Beijing, P. R. China — From the analysis of γ - γ - γ coincidence data taken with Gammasphere of the prompt γ rays in the spontaneous fission of 252 Cf, a cascade of six transitions, at 108.0, 115.1, 263.8, 404.8, 535.2, and tentatively 679.5 keV, was identified in 144 Cs for the first time. The transitions were assigned to a cascade with these energies in ¹⁴⁴Cs from their relative intensities and by identifying their coincidences with the known transitions in 105 Tc and 106 Tc, the 3n and 2n fission partners of 144 Cs, and comparing the Tc intensities to the respective Tc yield tables. The energy levels in 138,140,142 Cs with N = 83, 85, and 87, respectively, just above the spherical closed shell at N = 82, each have first excited states around 10 keV and second excited states between 16 and 65 keV, and no rotational-type bands. These states are associated with single particle states in the spherical region. With N = 89 in 144 Cs, one has crossed the region between N = 88 and 90 where there is a rather sudden change from spherical nuclei with N \leq 88 to significant deformation in N \geq 90 nuclei. The levels in ¹⁴⁴Cs look like a rotational band in a more well-deformed nucleus.

> E.F. Jones Dept. of Physics, Vanderbilt Univ., Nashville, Tennessee 37235, U.S.A.

Date submitted: 08 Sep 2006

Electronic form version 1.4