Abstract Submitted for the SES07 Meeting of The American Physical Society

Resonance structure of the photoelectron β_{nl} parameter versus autoionizing resonance minima in partial $\sigma_{nl\pm 1}$ cross sections: A model of "complete" experiments with fewer measurements VALERIY DOLMA-TOV, EMRE GULER, University of North Alabama — The relationship between the structure of the autoionizing resonance minima in partial photoionization cross sections $\sigma_{nl\pm 1}$ and the resonance profile of the dipole photoelectron angular distribution parameter β_{nl} in the vicinity of the resonance is established. From this, the information can be extracted (from known β_{nl} alone) on the energy positions and ordering of autoionizing resonance minima in $\sigma_{l\pm 1}$, the energies at which σ_{l+1} and σ_{l-1} are equal, signs and magnitudes of relative phase shifts of the photoionization amplitudes $D_{l\pm 1}$ through the autoionizing resonance energy region, and the magnitudes of $D_{l\pm 1}$ at extreme points in β_{nl} ; no tedious experimentation with electron spin polarization or light polarization is required. The established relationship expands our previously developed, so to speak "point" model of "complete" photoionization experiments with fewer measurements [V.K. Dolmatov and S.T. Manson, PRA 58, R2635 (1998)] onto a broader energy region [V.K. Dolmatov, E. Guler, S.T. Manson, PRA (submitted)].

¹This work was supported by NSF grant PHY-0652704.

Valeriy Dolmatov University of North Alabama

Date submitted: 16 Aug 2007 Electronic form version 1.4