Abstract for an Invited Paper
for the SES07 Meeting of
The American Physical Society

Beta decay studies around doubly magic 78Ni
KRZYSZTOF RYKACZEWSKI, ORNL

The main motivations to study very neutron rich nuclei in the 78Ni region are related to the evolution of nuclear structure and to the path of nucleosynthesis within rapid neutron capture. In particular, neutrons filling $g_{9/2}$ orbital between 68Ni and 78Ni affect spin-orbit splitting of proton single-particle states. An increasing beta- delayed neutron emission probabilities are changing the isobaric distributions of nuclei involved in the r-process. The report on the recent results on the decay of most neutron- rich isotopes of copper and gallium [1] will be presented. These proton-induced 238U fission products were produced and studied at Holifield Radioactive Ion Beam Facility at Oak Ridge using a “ranging-out” method [2] for postaccelerated beams purification. In collaboration with Jeff Winger and Sergey Iliushkin, Mississippi State University; Carl Gross and Dan Shapira, ORNL; Carrol Bingham, UTK; Robert Grzywacz, ORNL; Chiara Mazzocchi, Sean Liddick, Steven Padgett, and Mustafa Rajabali, UTK; Jon Batchelder, UNIRIB-ORAU; Edward Zganjar and Andreas Piechaczek, LSU; Christopher Goodin and Joseph Hamilton, Vanderbilt University; and Wojciech Krolas, JIHIR Oak Ridge.