Abstract Submitted for the SES08 Meeting of The American Physical Society

Search For the Rare Decay $K_L \to \pi^0 \pi^0 \mu^+ \mu^-$ DAVID PHILLIPS, University of Virginia, KTEV COLLABORATION¹ — Using data collected by the KTeV Experiment at Fermi National Accelerator Laboratory in Batavia, Illinois, this study will be the first experimental analysis of $K_L \to \pi^0 \pi^0 \mu^+ \mu^-$. Although this decay mode is possible within the Standard Model, it is limited to a very narrow band of phase space. The HyperCP Experiment has recently observed three $\Sigma^+ \to p \mu^+ \mu^-$ events within a narrow dimuon mass range of 213.8 MeV/ c^2 to 214.8 MeV/c^2 . This suggests that the process occurs via a neutral intermediary particle, $\Sigma^+ \to pX^0 \to p\mu^+\mu^-$, with an X^0 mass of 214.3 MeV/ $c^2\pm 0.5$ MeV/ c^2 . Since the X^0 has a light mass and a low interaction probability, then it is not feasible within the Standard Model. However, the X^0 could be explained by a theory known as the "Next-to-Minimal Supersymmetric Standard Model" (NMSSM). In NMSSM, there are seven Higgs bosons and theorists believe that the X^0 may be the lightest of this group. Recent theoretical predictions suggest that the decay mode $K_L \to \pi^0 \pi^0 \mu^+ \mu^-$ can also occur via the aforementioned neutral intermediary particle: $K_L \to \pi^0 \pi^0 X^0 \to \pi^0 \pi^0 \mu^+ \mu^-$. Therefore, in addition to a Standard Model measurement, the search for $K_L \to \pi^0 \pi^0 \mu^+ \mu^-$ is also carried out in an effort to address the viability of X^0 in explaining the HyperCP phenomena.

¹for the KTeV Collaboration

David Phillips University of Virginia

Date submitted: 11 Aug 2008 Electronic form version 1.4