SES08-2008-000109

Abstract for an Invited Paper for the SES08 Meeting of the American Physical Society

Magnetomotive optical coherence tomography for elastography of small biosamples AMY OLDENBURG, University of North Carolina at Chapel Hill

Optical coherence tomography (OCT) is a 3D micron-resolution imaging modality using the low-coherence properties of near-infrared light to render depth-resolved images typically a few millimeters into biological tissue. Visco-elasticity is an important parameter for detecting and staging various human diseases. We report a method for analyzing the visco-elastic properties of small tissue samples using magnetomotive OCT. Superparamagnetic nanoparticles (MNPs, ~20nm) are diffused into a tissue sample. Subsequently, an electromagnet is modulated with a chirped frequency waveform from 0-1kHz, providing a modulated force on the MNPs in the tissue. The mechanical response of the tissue is recorded using OCT at linerates of 1-10kHz. Because OCT is a coherence imaging technique, sub-wavelength displacements are detected in the phase of the interferogram. The mechanical frequency response and associated phase lag fit a model for a damped harmonic oscillator, and results in homogeneous agarose cylinders can be interpreted in terms of Love's solutions for longitudinal vibration modes. A rat mammary tumor biopsy was also analyzed with this technique during formaldehyde fixation, and a trend toward higher frequency correlates with stiffening of the tissue during the fixation process. In collaboration with Stephen Boppart, University of Illinois at Urbana-Champaign.