Abstract Submitted for the SES08 Meeting of The American Physical Society

Purification of ⁴**He through Differential Evaporation**¹ F. DUBOSE, D.G. HAASE, P.R. HUFFMAN, NC State University — The neutron electric dipole moment (nEDM) experiment, to be housed at the Spallation Neutron Source at Oak Ridge National Laboratories, will probe for a dipole moment at the level of 10^{-28} e cm. As part of the measurement process, neutrons precess in an environment of isotopically pure helium, doped with polarized ³He. After this ³He depolarizes it must be removed. We are developing an evaporative purification technique for this removal, lowering the concentration of ³He in ⁴He from 10^{-8} to 10^{-10} , at an operating temperature of 300 - 350 mK. Because the vapor pressure of ³He is enhanced at temperatures below 500mK, ³He atoms can be preferentially removed from the solution. The purifier requires a large liquid surface area, while minimizing superfluid film flow. The evaporated atoms are adsorbed on activated charcoal. We have built a device to measure ³He/⁴He ratios using a leak detector mass spectrometer and a residual gas analyzer.

¹Work supported by US Department of Energy contract DE-FG02-97ER41042.

D. G. Haase NC State University

Date submitted: 19 Aug 2008

Electronic form version 1.4