SES08-2008-000155

Abstract for an Invited Paper for the SES08 Meeting of the American Physical Society

Alpha decay studies near ¹⁰⁰Sn SEAN LIDDICK, University of Tennessee

Nuclei around the exotic doubly-magic ¹⁰⁰Sn can provide key information to, and serve as rigorous tests of, the nuclear shell model. In particular, the energy splitting between neutron single-particle orbits in this region, the $\nu d_{5/2} - \nu g_{7/2}$, can be extracted from the low-energy excited states in the odd-N Sn isotopes, ideally from ¹⁰¹Sn. Identification and examination of these nuclei is aided by the presence of an island of alpha and proton radioactivity for nuclei with Z > 50 near ¹⁰⁰Sn. The isotopes ¹⁰⁹Xe and ¹⁰⁵Te were identified at the Holifield Radioactive Ion Beam Facility using the Recoil Mass Spectrometer through the observation of the characteristic alpha decay chain ¹⁰⁹Xe \rightarrow ¹⁰⁵Te \rightarrow ¹⁰¹Sn. The efficient identification of the fast ¹⁰⁵Te alpha decay was enabled through the use of digital signal processing using advanced pulse shape analysis alogrithms. The unique double alpha decay pulse provided an ideal tag to observe gamma-ray emission from the excited states of both ¹⁰⁵Te and ¹⁰¹Sn at approximately 150 and 172 keV, respectively. Both excited states in ¹⁰⁵Te and ¹⁰¹Sn were populated through alpha decay. The observation of the first excited state in ¹⁰¹Sn provides the $\nu d_{5/2} - \nu g_{7/2}$ energy splitting. Using the experimental value in shell model calculations suggests an ordering of single particle states in ¹⁰¹Sn that contradicts previous expectations. The possibility of reaching the ¹⁰⁸Xe \rightarrow ¹⁰⁴Te \rightarrow ¹⁰⁰Sn alpha decay chain will also be discussed.