A Novel approach towards integration of VO\textsubscript{2} thin films on Si(100) for thermal switching devices applications ALOK GUPTA, RAVI AGGARWAL, JAGDISH NARAYAN, Department of Materials Science & Engineering, North Carolina State University — VO\textsubscript{2} exhibits a very interesting semiconductor to metal transition (SMT) as the crystal structure changes from monoclinic to tetragonal upon heating close to 68°C. Parameters associated with SMT in VO\textsubscript{2} thin films, such as, transition temperature (\(T_t\)), hysteresis (\(\Delta H\)), transition width (\(\Delta T\)) and the order of magnitude change (\(\Delta A\)) are a strong function of microstructure, orientation, and stoichiometry. We have developed a novel method to produce epitaxial VO\textsubscript{2} thin films with controlled SMT characteristics and its integration with Si(100) substrate which is of immense technological importance due to a variety of sensor- and memory-type applications. We have optimized the deposition conditions for the growth of epitaxial VO\textsubscript{2} films on Si substrate using a pulsed-laser deposition method. The integration of VO\textsubscript{2} with Si was accomplished via domain matching epitaxy of TiN and MgO intermediate layers on Si. XRD and HR-XTEM studies were carried out and resistance measurements were done to quantify the SMT parameters as a function of microstructure and composition. We have established structure-property correlations and related to our phenomenological model based upon thermodynamics.

Jagdish Narayan
Department of Materials Science & Engineering, North Carolina State University