Abstract Submitted for the SES08 Meeting of The American Physical Society

Mid-infrared Emission and Energy Transfer Properties of Sensitized Nd³⁺ Ions in Low Phonon-Energy Hosts ALTHEA BLUIETT, NATASHA JACOBITZ, NATASHA STOKES, Elizabeth City State University, EIEI BROWN, UWE HOMMERICH, Hampton University, SUDHIR TRIVEDI, Brimrose Corporation of America, JOHN ZAVADA, North Carolina State University — Mid-infrared emission (4-6 μ m) stemming from the first excited state of Nd³⁺ can be generated in KPb₂Cl₅ by pumping its ${}^{4}F_{5/2}$ absorption band at ~800 nm. It has been proposed that 4-6 μ m emission of Nd³⁺ could be enhanced by directly pumping the ${}^{4}I_{15/2}$ absorption band centered at ~1650 nm. This pumping scheme could initiate a 3-for-1 cross relaxation, which ultimately increases the population in the first excited state of Nd³⁺. Unfortunately, the ${}^{4}I_{15/2}$ absorption band of Nd³⁺ is weak and diode laser pumping of this level is not practical. To more efficiently populate the ${}^{4}I_{15/2}$ level in Nd: KPb₂Cl₅, Tm sensitization of Nd³⁺ via ~1700 nm excitation is under exploration. Experimental results show that the $Tm \Diamond Nd$ energy transfer was successful with energy transfer efficiencies ranging from 46% - 98%. The energy transfer was followed by strong 4-6 μ m emission from co-doped Tm, Nd: KPb₂Cl₅ samples. Preliminary results on Tm, Nd: KPb₂Br₅ will also be discussed.

> Althea Bluiett Elizabeth City State University

Date submitted: 11 Sep 2008

Electronic form version 1.4