Anomalous capacitance effects in GaN/Al$_{0.026}$Ga$_{0.974}$N structures1

G. ROTHMEIER, L. BYRUM, N. DIETZ, A.G.U. PERERA, S. MATSIK, Georgia State University, I. FERGUSON, Georgia Institute of Technology, A. BEZINGER, H.C. LIU, National Research Council Canada — The effects of interface defect states on the capacitance characteristics of an n^+GaN/Al$_{0.026}$Ga$_{0.974}$N/iGaN/n^+-GaN structure are reported. An anomalous high-frequency capacitance peak was observed in the capacitance-frequency (C-f) profiles. Using IR spectroscopy, the defect related absorption centers with activation energies of 125 ± 1 and 139 ± 2 meV were attributed to C-donor/N-vacancy and Si-donor states pinned to the n^+GaN layer, respectively. Si defect states at the iGaN/n^+GaN interface were found to produce the high-frequency capacitance peak. The peak can result from resonance scattering due to the hybridization of localized Si-donor states in the band gap (with electronic levels above the conduction band minimum) and continuous conduction band states at the iGaN/n^+GaN interface.

1Work supported in part by the US Air Force, US National Science Foundation and GSU MDBAF.