Abstract Submitted for the SES09 Meeting of The American Physical Society

Extensive Scaling of Computational Homology and Karhunen-Loève Decomposition in Rayleigh-Bénard Convection Experiments¹ HÜSEYIN KURTULDU, MICHAEL SCHATZ, Georgia Institute of Technology — We apply two different pattern characterization techniques to large data sets of spatiotemporally chaotic flows in Rayleigh-Bénard convection (RBC) experiments. Both Computational homology (CH) and a modified Karhunen-Loève decomposition (KLD) are used to analyze the data. The KLD dimension D_{KLD} , the number of eigenmodes required to capture a given fraction of the eigenvalue spectrum, is computed for different subsystem sizes. A similar quantity D_{CH} for the same experimental data is acquired by the probability distribution of topological states constructed from the outputs of CH. We show that both D_{CH} and D_{KLD} scale over a large range of subsystem sizes for the state of SDC; moreover, we find the presence of boundaries leads to deviations from extensive scaling that are similar for both methodologies.

¹supported by DOE

Huseyin Kurtuldu Georgia Institute of Technology

Date submitted: 15 Aug 2009

Electronic form version 1.4