Abstract Submitted for the SES09 Meeting of The American Physical Society

Generating Geometrical Elements for Any Space-Time DENNIS MARKS, Valdosta State U. — To distinguish time from space, use real Clifford algebras $\mathbf{R}_{n:s}$, where n is the number of dimensions and s is their signature (s = $-n, -n+2, \ldots$, or n). $\mathbf{R}_{n;s}$ is isomorphic to algebras of real, complex, or quaternionic matrices $\mathbf{R}(2^{\frac{n}{2}})$, $\mathbf{C}(2^{\frac{n-1}{2}})$, or $\mathbf{H}(2^{\frac{n-2}{2}})$, or of block diagonal matrices ${}^{2}\mathbf{R}(2^{\frac{n-1}{2}})$ or ${}^{2}\mathbf{H}(2^{\frac{n-3}{2}})$, for $|(s + 3)_{mod8} - 4| = 1, 2, 3, 0, \text{ or } 4$, respectively. Each of the n basis vectors \mathbf{e}_{ν} satisfies $\mathbf{e}_{\mu} \cdot \mathbf{e}_{\nu} = \eta_{\mu\nu} \mathbf{I}_{n;s}$, where the \mathbf{e}_{ν} are orthogonal $\eta_{\mu\nu} = 0$ for $\mu \neq \nu$ and normalized $\eta_{\mu\nu} = +1$ for p space-like dimensions and $\eta_{\mu\nu} = -1$ for q time-like dimensions) and where $I_{n:s}$ is the identity matrix whose rank is given by the isomorphisms above. The geometrical elements are the scalar $I_{n;s}$, basis vectors \mathbf{e}_{ν} , and their products (bivectors, trivectors, etc.) up to the pseudo-scalar *n*-volume $\mathbf{J}_{\mathbf{n};\mathbf{s}} = \mathbf{e}_{\mathbf{0}} \mathbf{e}_{\mathbf{1}} \cdot \cdot \cdot \mathbf{e}_{\mathbf{n}-\mathbf{1}}$. Now $(\mathbf{J}_{n;s})^2 = (-1)^{\frac{s(s-1)}{2}} \mathbf{I}_{n;s} = \sigma_s \mathbf{I}_{n;s}$. The direct product of $\mathbf{R}_{n;s}$, with *n* orthonormal basis vectors \mathbf{e}_{ν} with signature *s*, and $\mathbf{R}_{n':s'}$, with n' orthonormal basis vectors $\mathbf{e}_{\nu'}$ with signature s', is $\mathbf{R}_{n+n';s+s'\sigma_s}$, with n+n'orthonormal basis vectors $\mathbf{e}_{\nu} \otimes \mathbf{I}_{\mathbf{n}';\mathbf{s}'}, \mathbf{J}_{\mathbf{n};\mathbf{s}} \otimes \mathbf{e}_{\nu'}$ with signature $s + s'\sigma_s$, for even positive n. Orthonormal basis vectors for any positive n with any possible signature can be generated from the two orthonormal basis vectors of the Minkowskian plane.

> Dennis Marks Valdosta State U.

Date submitted: 17 Aug 2009

Electronic form version 1.4