Abstract Submitted for the SES09 Meeting of The American Physical Society

FTIR Difference Spectroscopy for the Study of Photosystem I A₁Acceper NAN ZHAO, GARY HASTINGS — Photosystem I (PS I) is a protein complex which carries out light-induced charge separation in oxygenic photosynthesis. Phylloquinone acts as the secondary electron acceptor in PS I. The A_1 accepter is of interest because it has the lowest reduction potential of any quinone found in nature. In MenB mutant PS I particles from Synechocystis sp. 6803, a plastoquinone-9 molecule occupies the A_1 binding site instead of phylloquinone. Using men B PS I particles, it has been shown that it is possible to replace plastoquinone-9 in the A_1 site with phylloquinone. To probe the molecular properties of phylloquinone and its environment in both the neutral and reduced state, we have used time-resolved step-scan FTIR difference spectroscopy (TRSS FTIR DS) to supply dynamic structural information concerning the electron-transfer cofactor. We have produced timeresolved A_1^{-}/A_1 FTIR DS using menB mutant PS I particles in which phylloquinone has been reintroduced into the A₁ binding site. We also have obtained time-resolved A_1^-/A_1 FTIR difference spectra for menB PS I particles that are globally ¹³C labeled where ${}^{12}C$ labeled phylloquinone was incorporated into the A₁ binding site. By incorporating ¹²C labeled phylloquinone into ¹³C labeled PS I, we are able to identify carbonyl (C=O)-sensitive bands of A_1^- and A_1 .

Nan Zhao

Date submitted: 17 Aug 2009

Electronic form version 1.4