Abstract Submitted for the SES09 Meeting of The American Physical Society

Calculated and Experimental Vibrational Properties of P700 and the Iron Sulfur Cluster in Photosystem I HARI LAMICHHANE, GARY HASTINGS, Georgia State University — Density functional theory (DFT) based vibrational frequency calculations of $Fe_4S_4(SR)_4^{n-}$ clusters show that the intense ironsulfur stretching modes lie in the frequency region between $300-400 \text{ cm}^{-1}$. Among them the iron-sulfur ligand (Fe-S^t) stretching modes are more intense and ~ 30 $\rm cm^{-1}$ lower in frequency than the iron-sulfur body (Fe-S^b) stretching modes. Calculations in tetrahydrofuran (THF) show that all these iron-sulfur stretching modes of vibration downshift by $\sim 20 \text{ cm}^{-1}$ upon reduction of the molecule. On the other hand, we have not observed any intense bands from chlorophyll a in the frequency region 400 to 320 cm^{-1} from the calculations. In an attempt to detect modes associated with iron sulfur clusters in PS I we have obtained light induced ($P700^+$ - P700) FTIR difference spectra for PSI particles from S.6803 in the far infrared region. We observe difference bands at many frequencies in the 600-300 $\rm cm^{-1}$ region. Based on our calculations and literature values we claim that the negative bands at 388 $\rm cm^{-1}$ and 353 $\rm cm^{-1}$ in the (P700⁺- P700) FTIR difference spectra be assigned to Fe-S^b and Fe-S^t stretching modes of the ground state of the iron-sulfur cluster F_B .

> Hari Lamichhane Georgia State University

Date submitted: 18 Aug 2009

Electronic form version 1.4