Gravitational Polarization & The Schiff-Dessler Controversy
PAWEL MORAWICE	extsuperscript{1}, Univ of South Carolina, MING YIN, Benedict College, SC 29204, MICHAEL WESCOTT, DAN OVERCASH, TIMIR DATTA, Univ of South Carolina — The behavior of composite matter in external fields can be very reveling. The quantum mechanical problem of an electrically conducting material object (test mass) placed in a uniform (weak) gravitational field, \(g \), was considered by many authors starting with Schiff [Phys. Rev. 151, 1067 (1966)]. Depending on the theoretical treatment opposing results of gravity induced (electric) field \(E_g \) have been reported. In the Schiff model [L.I. Schiff, PRB, 1, 4649 (1970)] \(E_g \) is predicted to be oriented anti-parallel (with reference to \(g \)). On the other hand it is found to be parallel in the more realistic elastic lattice model [A. J. Dessler et al, Phys.Rev. 168, 737, (1968); Edward Teller, PNAS, 74, 2664 (1977)]. Surprisingly, this contradiction has been largely overlooked by modern researchers. The preliminary results of an experimental study will be reported. Several interesting theoretical and technological implications will be suggested.

1Student

Ming Yin
Benedict College, SC 29204

Date submitted: 18 Aug 2009
Electronic form version 1.4