Switching Behavior of Ag/Molecule/Metal Junctions Using m-1-Carboranethiol, 3-Chloro-1-propanethiol, and 1,1’,4’,1”-Terphenyl-4-thiol
KEVIN ANDRING, LAM YU, University of Memphis — The investigation of nanoscale switch elements is an important step towards developing low-power, low-cost, high-density electronic devices. Here we present how the switching behavior of a Ag/molecule/metal junction changes with the variation of monolayers in a crossed-wire tunnel junction geometry. By creating self-assembled monolayers (SAMs) on silver and gold wires, this geometry is used to show how the switching rates, threshold voltages, and on/off ratios vary with monolayers of m-1-Carboranethiol, 3-Chloro-1-propanethiol, and 1,1’,4’,1”-Terphenyl-4-thiol.