Abstract Submitted for the SES11 Meeting of The American Physical Society

An Approximation to the Periodic Solution of a Differential Equation of Abel RONALD E. MICKENS, Clark Atlanta University — The Abel equation, in canonical form, is $y' = \text{sint-} y^3(*)$ and corresponds to the singular ($\varepsilon \rightarrow 0$) limit of the nonlinear, forced oscillator $\varepsilon y'' + y' + y^3 = \text{sint}, \varepsilon - > 0$. (**) Equation (*) has the property that it has a unique periodic solution defined on ($-\infty,\infty$). Further, as t increases, all solutions are attracted into the strip |y| < 1 and any two different solutions $y_1(t)$ and $y_2(t)$ satisfy the condition

Lim $[y_1(t) - y_2(t)] = 0$, (***)

t $-> \infty$ and for t negatively decreasing, each solution, except for the periodic solution, becomes unbounded.¹ Our purpose is to calculate an approximation to the unique periodic solution of Eq. (*) using the method of harmonic balance. We also determine an estimation for the blow-up time of the non-periodic solutions.

¹U. Elias, American Mathematical Monthly, vol.115, (Feb. 2008), pps. 147-149.

Ronald E. Mickens Clark Atlanta University

Date submitted: 23 Aug 2011

Electronic form version 1.4