Abstract Submitted for the SES11 Meeting of The American Physical Society

Neutron emission asymmetries from linearly polarized γ rays on nat Cd, nat Sn, and 181 Ta W. CLARKE SMITH, GERALD FELDMAN, George Washington University, $HI\gamma S$ COLLABORATION — Azimuthal asymmetries in neutron yields produced by bombarding targets with linearly polarized photons via $(\gamma,n), (\gamma,2n),$ and (γ,f) reactions are being investigated as a possible means of identifying various nuclear isotopes. The High Intensity γ -ray Source (HI γ S) at Duke University provides nearly monochromatic, circularly or linearly polarized γ rays with high intensity by Compton backscattering free-electron-laser photons from stored electrons. Linearly polarized γ rays produced by HI γ S were incident on nat Cd, nat Sn, and 181 Ta targets at six energies E_{γ} between 11.0 and 15.5 MeV and emitted neutrons were detected both parallel and perpendicular to the plane of polarization by an array of 18 liquid-scintillator detectors at angles in the range $\theta = 55^{\circ}-142^{\circ}$. Detected neutrons were distinguished from Compton scattered photons by pulseshape-discrimination and timing cuts, and their energies (E_n) were determined using time-of-flight information over a 0.5 m flight path. The characteristic plots of R_n , the ratio of neutron counts parallel to neutron counts perpendicular to the plane of the incident γ -ray polarization, against E_n were constructed for each value of E_{γ} and θ and then compared to those for other targets studied at HI γ S, including fissile nuclei 235 U and 238 U.

> W. Clarke Smith George Washington University

Date submitted: 24 Aug 2011 Electronic form version 1.4