Abstract Submitted for the SES11 Meeting of The American Physical Society

Impact of Recent Laboratory N_2 Data to our Understanding of Thermospheric Nitric Oxide (NO) JUSTIN YONKER, KARTHIK VENKATARAMANI, SCOTT BAILEY, Virginia Tech — In spite of its status as a minor species, NO plays key roles in many upper atmospheric processes. As the only heteronuclear molecule, its fundamental, $\Delta v=1$ emission cools the thermosphere (z > 100 km). Its low ionization potential ensures that NO⁺ is the end product of the ion-neutral chemistry in the ionospheric E-region. And in the presence of excess atomic oxygen, NO will catalytically destroy ozone. The production of NO is initiated when N_2 is ionized, dissociated, or excited by the solar EUV irradiance ($\lambda < 100$ nm). In the mesosphere and lower thermosphere (MLT), much of the irradiance is contained in the highly variable soft x-ray region $(1 < \lambda < 20 \text{ nm})$. The resulting photoelectrons produce additional ionization as well as excitation of metastable, chemically-reactive species like the first electronically excited N_2 state, $N_2(A^3\Sigma_u^+)$. This talk will incorporate recent laboratory data on the N₂ photoabsorption and electron-impact cross-sections into a 1D photochemical reaction-diffusion model of the thermosphere. It is shown that spin-forbidden ($\Delta S=1$) excitation to the N_2 triplet manifold enables neutral N_2 to participate in the NO production. Additional physical and chemical uncertainties relevant to NO production and loss are also presented.

> Justin Yonker Virginia Tech

Date submitted: 24 Aug 2011

Electronic form version 1.4