Abstract Submitted for the SES13 Meeting of The American Physical Society

Topology and Geometry Perspectives of Functional Materials¹ S. GUPTA, Western Kentucky University, A. SAXENA, Los Alamos National Laboratory — In this talk we address the key concept of topology that impacts materials science in a major way, and to the recent significant advances in our understanding of the important topological notions in a wide class of materials with potential technologies. A paradigm of topology/geometry \rightarrow property \rightarrow functionality is emerging which goes beyond the traditional paradigm of microscopic structure \rightarrow property \rightarrow functionality relation. It delineates the active roles of topology and geometry in designing, fabrication, characterization and predictive modeling of novel materials properties and multi-functionalities. After introducing the basic essentials of topology and geometry, we elucidate these concepts through a gamut of nanocarbon allotropes of de novo carbons, hierarchical self-assembled soft- and bio-materials, supramolecular assemblies, nanoporous materials and so forth. The applications of these topological materials range from sensing, energy storage/conversion, catalysis to nanomedicine, to name a few. We illustrate these concepts through resonance Raman spectroscopy and related experiments on nanocarbons as well as a slew of soft- and bio-materials with an emphasis on topological metrology. We also discuss topological defects (local versus extended) such as Stone-Wales and mitosis, domain walls, vortices, boojums, skyrmions, magnetic monopoles in artificial spin ice and Hopf fibrations as well as other (complex and network) topologies in materials and quantum systems.

¹We acknowledge both the Department of Energy and CINT-LANL Gateway.

S. Gupta Western Kentucky University

Date submitted: 18 Sep 2013

Electronic form version 1.4