Direct Observation of the Second $J^\pi = 2^+$ State in 12C and New Triple-α Thermonuclear Reaction Rates1

WILLIAM ZIMMERMAN, Triangle Universities Nuclear Laboratory

During core-collapse supernovae, the triple-α thermonuclear reaction rates at high temperatures can affect the outcome of explosive nucleosynthesis and the production of heavy elements. The question of the existence of a second $J^\pi = 2^+$ state in 12C has led to a long-standing disagreement in the triple-α thermonuclear reaction rates at high temperatures. This 2^+_2 state has been directly observed in the 12C(γ, α)8Be reaction using the intense, nearly monoenergetic γ-ray beams available at the High Intensity γ Source (HI\textgamma S) facility. The α particles produced by the photodisintegration of 12C were detected using an optical time projection chamber (OTPC). This allowed for the measurement of complete angular distributions which were used to determine the $E1$ and $E2$ amplitudes and their relative phases. The 2^+_2 state was observed in the $E2$ cross section and confirmed in the behavior of the relative phases. This unique combination of a Compton-backscattered γ-ray beam and an active-target system made possible the first unambiguous identification of this 2^+ state. New triple-α thermonuclear reaction rates have been calculated based on the results of this experiment, and simulations based on the $\nu\pi$ process [1] have been performed illustrating the effect of the second 2^+ state in 12C on the outcome of explosive nucleosynthesis.

1Supported in part by U.S. Department of Energy, grant numbers DE-FG02-97ER41033 and DE-FG02-94ER40870.