SES13-2013-000093

Abstract for an Invited Paper for the SES13 Meeting of the American Physical Society

Direct Observation of the Second $J^{\pi} = 2^+$ State in ¹²C and New Triple- α Thermonuclear Reaction Rates¹ WILLIAM ZIMMERMAN, Triangle Universities Nuclear Laboratory

During core-collapse supernovae, the triple- α thermonuclear reaction rates at high temperatures can affect the outcome of explosive nucleosynthesis and the production of heavy elements. The question of the existence of a second $J^{\pi} = 2^+$ state in ¹²C has led to a long-standing disagreement in the triple- α thermonuclear reaction rates at high temperatures. This 2^+_2 state has been directly observed in the ¹²C(γ, α)⁸Be reaction using the intense, nearly monoenergetic γ -ray beams available at the High Intensity γ Source (HI γ S) facility. The α particles produced by the photodisintegration of ¹²C were detected using an optical time projection chamber (OTPC). This allowed for the measurement of complete angular distributions which were used to determine the *E*1 and *E*2 amplitudes and their relative phases. The 2^+_2 state was observed in the *E*2 cross section and confirmed in the behavior of the relative phases. This unique combination of a Compton-backscattered γ -ray beam and an active-target system made possible the first unambiguous identification of this 2^+ state. New triple- α thermonuclear reaction rates have been calculated based on the results of this experiment, and simulations based on the νp process [1] have been performed illustrating the effect of the second 2^+ state in ¹²C on the outcome of explosive nucleosynthesis.

[1] A. Arcones, C. Fröhlich, and G. Martínez-Pinedo, ApJ 750, 18 (2012)

¹Supported in part by U.S. Department of Energy, grant numbers DE-FG02-97ER41033 and DE-FG02-94ER40870.