Abstract Submitted for the SES13 Meeting of The American Physical Society

Elastic electron scattering off $A@C_{60}$ versus off C_{60} versus off a free atom¹ MAISEY HUNTER, MATTHEW COOPER, VALERIY DOLMATOV, University of North Alabama — The recent decade or so has seen much of research on the structure and spectra of endohedral fullerenes $A@C_{60}$. However, to the best of our knowledge, electron elastic scattering off $A@C_{60}$ has so far escaped its study, despite of its obvious basic significance. Can one detect the presence of an encapsulated atom A inside the hollow cage of C_{60} by performing a $e + A@C_{60}$ elastic scattering experiment? If a "yes", how much does the atom A in $A@C_{60}$ contribute to electron scattering off $A@C_{60}$ compared to scattering off empty C_{60} ? If the encapsulated atom has a non-zero spin, could this lead to appreciable differences between scattering of oppositely spin-polarized electrons of $e + A@C_{60}$? The present work unravels positive answers to the above questions within, so to speak, a zeroorder approximation, as the very first step in understanding of $e + A@C_{60}$ scattering. There, the C_{60} cage itself is modeled by a spherical potential shell [as in numerous A@C₆₀ photoionization studies, see, e.g., V. K. Dolmatov, Adv. Quant. Chem. 58, 13 (2009)], the atom A is placed at the center of the shell, and, as a strong simplification of the problem, both the encapsulated atom A and C_{60} cage are regarded as rigid, i.e., non-polarizable targets. This study itself, as well as differences between its results and (future) more sophisticated calculations, should be viewed as a first step in identifying measurements to perform.

¹Supported by a RUI NSF grant PHY-1305085.

Valeriy Dolmatov University of North Alabama

Date submitted: 19 Sep 2013

Electronic form version 1.4