Abstract Submitted
for the SES14 Meeting of The American Physical Society

Specular Reflection as the Universal Formulation for \mathbf{N} dimensional Diffraction Gratings, N=1- $\mathbf{3}$ MING YIN, Benedict College Physics/Engineering, Columbia, SC 29204, LEI WANG, MICHAEL WESCOTT, TIMIR DATTA, Physics \& Astronomy, USC, Columbia, SC 29208 - Textbooks in Optics introduce the subject by the familiar 1-d grating formula, $\mathrm{a}\left[\alpha-\alpha_{\mathrm{i}}\right\}=\mathrm{n}_{\mathrm{x}} \lambda$, here ' a ' is the grating constant and λ is wavelength. Ever since the development of precession ruling engines by Rowland, 1- dimensional optical diffraction gratings have become ubiquitous, and workhorse in optical devices. Optical cross gratings (2-d) with lines ruled in both $\mathrm{x} \& \mathrm{y}$ directions are treated mutatis mutandis by a pair of 1-d grating formula. In 1912, Max von Laue, Nobel Physics for 1914, proposed his three fundamental equations for $3-\mathrm{d}$, x -ray grating as: $\mathrm{a}\left[\alpha-\alpha_{\mathrm{i}}\right\}=\mathrm{n}_{\mathrm{x}} \lambda ; \mathrm{b}[\beta-$ $\left.\beta_{\mathrm{i}}\right\}=\mathrm{n}_{\mathrm{y}} \lambda$ and $\mathrm{c}\left[\gamma-\gamma_{\mathrm{i}}\right\}=\mathrm{n}_{\mathrm{z}} \lambda$, here $\alpha, \beta \& \gamma\left(\alpha_{\mathrm{i}}, \beta_{\mathrm{i}} \& \gamma_{\mathrm{i}}\right)$ are the direction cosines of the outgoing (incoming) x-ray beam. Furthermore for simplicity an orthorhombic crystal structure with lattice constants a, b \& c, oriented along each Cartesian axis respectively, were assumed. However, Laue's grating theory was soon superseded by Lawrence Bragg's namesake formula $2 \mathrm{~d} \operatorname{Sin}(\theta)=\mathrm{n} \lambda$. Peter Ewald's reciprocal lattice construction demonstrated that when certain conditions, 3-d diffraction process reduces to Bragg's reflection law. We show that reflection is a generic or universal treatment for one, two or three-dimensional gratings.

Ming Yin
Benedict College Physics/Engineering, Columbia, SC 29204

