SES14-2014-000085

Abstract for an Invited Paper for the SES14 Meeting of the American Physical Society

Full-dimensional quantum dynamics calculations of rovibrationally inelastic scattering of CO-H_2^1 BENHUI YANG, University of Georgia

The CO-H₂ collisional system is crucial in determining the physics and chemistry of interstellar environments due to the astrophysical importance of H₂ and CO. We calculated for the first time a full-dimensional (6D) potential energy surface (PES) for this system using the high-level CCSD(T)-F12B method. The PES was fitted using an invariant polynomial method in 6D. Quantum close-coupling calculations of rotational and vibrational quenching of CO in collisions with H₂ were carried out on the new 6D PES. The pure state-to-state rotational excitations from CO($v_1 = 0$, $j_1=0$, 1) were benchmarked with crossed molecular beam measurement for collision energies of 795 - 991 cm⁻¹ and 3.3 - 22.5 cm⁻¹. The computed cross sections for $j_1 = 0 \rightarrow 1$ transition in CO and show better agreement with measurement than those obtained on a recently available 4D PES. For rovibrational transitions, state-to-state and total quenching cross sections and rate coefficients were calculated for the vibrational quenching in CO($v_1 = 1, j_1$)+H₂($v_2 = 0, j_2$) \rightarrow CO($v'_1 = 0, j'_1$)+H₂($v'_2 = 0, j'_2$) collisions, $j_1 = 0, 2$ for para-H₂ and $j_1 = 1, 3$ for ortho-H₂. The results are compared with experimental results and previous calculations using 4D PESs and various decoupling approximations. Our calculation also confirmed that the contribution from a quasi-resonant channel, CO($v_1=1$) + H₂($v_2=0, j_2=2$) \rightarrow CO($v'_1=0$) + H₂($v'_2=0, j'_2=6$), dominates the vibrational quenching of CO in collision with para-H₂ for $T \ge 50$ K.

¹Work at UGA and Emory are supported by NASA grant No. NNX12AF42G, at UNLV by NSF Grant No. PHY-1205838, and at Penn State by NSF Grant No. PHY-1203228.