Abstract Submitted for the SES14 Meeting of The American Physical Society

Atomic Masses of Tritium and Helium-3¹ BRIDGET WESSON, ANKE WAGNER, HOLGER KRACKE, EDMUND MYERS, Florida State University — By measuring the cyclotron frequency ratios of ³He⁺ to HD⁺ and T⁺ to HD⁺, and using HD⁺ as a mass reference, we obtain new atomic masses for ³He and T. Our results are $M[^{3}He] = 3.016\ 029\ 322\ 43(19)$ u and $M[T] = 3.016\ 049\ 281\ 78(19)$ u, where the uncertainty includes an uncertainty of 0.12 nu in the mass reference. Allowing for cancellation of common systematic errors, we find the Q-value for tritium beta-decay to be $(M[T] - M[^{3}He])c^{2} = 18\ 592.01(7)$ eV. This allows an improved test of systematics in measurements of tritium beta-decay that set limits on neutrino mass.

¹Support by the NSF under PHY-0968889 and by the NIST PMG program.

Edmund Myers Florida State University

Date submitted: 03 Oct 2014

Electronic form version 1.4