Atomic Masses of Tritium and Helium-3

BRIDGET WESSON, ANKE WAGNER, HOLGER KRACKE, EDMUND MYERS, Florida State University — By measuring the cyclotron frequency ratios of 3He$^+$ to HD$^+$ and T$^+$ to HD$^+$, and using HD$^+$ as a mass reference, we obtain new atomic masses for 3He and T. Our results are $M[^3\text{He}] = 3.016\,029\,322\,43(19) \text{ u}$ and $M[T] = 3.016\,049\,281\,78(19) \text{ u}$, where the uncertainty includes an uncertainty of 0.12 nu in the mass reference. Allowing for cancellation of common systematic errors, we find the Q-value for tritium beta-decay to be $(M[T] - M[^3\text{He}])c^2 = 18\,592.01(7) \text{ eV}$. This allows an improved test of systematics in measurements of tritium beta-decay that set limits on neutrino mass.

1Support by the NSF under PHY-0968889 and by the NIST PMG program.