SES14-2014-000134

Abstract for an Invited Paper for the SES14 Meeting of the American Physical Society

A Novel Method To Distinguish Fissile From Non-Fissile Materials Using Linearly Polarized Gamma-Ray Beams¹

JONATHAN MUELLER, Duke University and Triangle Universities Nuclear Laboratory

We have developed a novel method to distinguish fissile materials, such as those which may be used as fuel in a nuclear reactor or in a nuclear weapon, from non-fissile materials. Our method relies upon using a linearly-polarized γ -ray beam to induce fission within a sample and then measuring the outgoing fission neutrons. The High Intensity γ -ray Source (HI γ S) generated the γ -ray beams used in our experiments designed to test this novel method. The HI γ S beam is quasi-monoenergetic and nearly 100% linearly polarized. We performed photofission experiments using beams from 5.3 to 7.6 MeV on a variety of actinides: ²³²Th, ^{233,235,238}U, ²³⁷Np, and ^{239,240}Pu. In the fission process, on average 2-4 neutrons are emitted almost simultaneously with the fission event itself; these are known as prompt fission neutrons. An array of 12-18 liquid scintillator neutron detectors was used to measure the ratio of prompt fission neutron yields parallel to the plane of beam polarization to the yields perpendicular to this plane as a function of beam energy. A ratio near one was found for photofission of ^{233,235}U, ²³⁷Np, and ²³⁹Pu while a significant ratio (~1.5-3) was found for ²³²Th, ²³⁸U, and ²⁴⁰Pu. This large difference could be used to distinguish fissile isotopes (such as ^{233,235}U and ²³⁹Pu) from non-fissile isotopes (such as ²³²Th, ²³⁸U, and ²⁴⁰Pu). These ratios are in agreement with a model based on prompt neutron emission in fission and previously measured fission fragment angular distributions.

¹Partially supported by DHS (2010-DN-077-ARI046-02), DOE (DE-AC52-07NA27344 and DE-AC02-05CH11231), and the DOE Office of Science Graduate Fellowship Program (DOE SCGF)