Abstract Submitted for the SES15 Meeting of The American Physical Society

Photoresponse of Thermally-Deposited and Spin-coated As₂S₃ Chalcogenide Glass Thin Films¹ JOSHUA ALLEN², CAMERON JOHNSON³. LEO SATURDAY⁴, CATHLEANN THOMAS⁵, JUSTIN OELGOETZ, ANDRIY KOVALSKIY, Austin Peav State University, GLASS RESEARCH TEAM — Chalcogenide glass thin films are known as promising materials for optical recording, photonics and other applications which require substantial photoinduced optical effects in UV-VIS region. However, some applications such as non-linear optical elements in the IR region of spectrum prefer thin film materials with stable optical properties in the visible range. Spin-coating technology for fabrication of As_2S_3 thin layers stable to the influence of visible light in wide intensity range was developed. The photoinduced effects in thermally deposited and spin-coated films were compared. It was shown that the position of the absorption edge of spin-coated samples does not change up to the intensities of LED light close to 160 mW/cm^2 . Raman studies of photoinduced structural transformations in both thermally deposited and spin-coated layer were studied. Structural stability of glass matrix for the spincoated layers was confirmed. Computational model of the photostructural transformations is presented for the thermally deposited films.

¹Financial support from NSF grant DMR-1409160 is acknowledged.

²Undergraduate Student ³Undergraduate Student ⁴Undergraduate Student ⁵Undergraduate Student

> Andriy Kovalskiy Austin Peay State Univ

Date submitted: 15 Oct 2015

Electronic form version 1.4