SES16-2016-000032

Abstract for an Invited Paper for the SES16 Meeting of the American Physical Society

Unusual Magnetic-Pressure Response of an S = 1 Antiferromagnetic Linear-Chain near the $D/J \approx 1$ Critical Point ^{*1} MARK W. MEISEL, Department of Physics and NHMFL, University of Florida, Gainesville

An S = 1 chain, $[Ni(HF_2)(3-Clpy)_4]BF_4$ (py = pyridine), has been identified to have nearest-neighbor antiferromagnetic interaction $J/k_B = 4.86$ K and single-ion anisotropy $D/k_B = 4.3$ K, while avoiding long-range order to 25 mK.[†] With D/J = 0.88, this system is close to the $D/J \approx 1$ gapless quantum critical point between the Haldane and Large-D phases. The magnetization was studied at 50 mK $\leq T \leq 1$ K and with $B \leq 10$ T.[‡] Using a magnetometer equipped with a pressure cell, the low-field (0.1 T), high temperature ($T \geq 2$ K) magnetic susceptibility was studied to 1.47 GPa. These data suggest the response at ambient pressure[†] changes between 0.24 GPa and 0.35 GPa. These studies have been or are being extended by ¹H NMR experiments capable of varying the pressure, inelastic neutron scattering investigations down to 300 mK, and X-ray diffraction at 300 K and with pressures up to nominally 1.5 GPa. The status of the analysis of all of the data sets will be provided.

† J.L. Manson et al., Inorg. Chem. 51 (2012) 7520.

‡ J.-S. Xia et al., arxiv.1409.5971 (2014).

* This work is a collaboration involving M.K. Peprah, P.A. Quintero, J.S. Xia, Y. Tao, X. Zuo, J.M. Pérez, A. Garcia, S.E. Brown, S. Lapidus, and J.L. Manson.

¹Supported by the NSF via DMR-1202033(MWM) and DMR-1157490 (NHMFL), and by the State of Florida.