Study of Polarized 3He Performance in Tokamak Fuel Pellets

JIE LIU, University of Virginia — Nuclear fusion has long been considered an ultimate solution for a clean, renewable, and powerful energy production. Despite decades of research, ignition, or self-sustained energy production, has not been reached in any of fusion reactors built so far. The use of spin-polarized fuel in a tokamak reactor would provide a significant boost. It was predicted that the fusion cross section between deuterium (D) and tritium (T) is boosted 50% when both D and T fully polarized along the local magnetic field. However, their polarization survival in a plasma environment has never been tested. An approach was developed to perform a direct test in the DIII-D tokamak in San Diego, using the mirror reaction $\text{D} + ^3\text{He} = \alpha + \text{p}$. This proof-of-principle experiment would use inertial confinement fusion (ICF) pellets containing either hyperpolarized D (in the form of solid HD) or hyperpolarized ^3He, which would be injected directly into the plasma core. A series of tests were done to demonstrate the ability to fill inertial confinement fusion (ICF) polymer pellets with pressurized polarized ^3He, using data acquired with a clinical 1.5-T magnetic resonance imaging (MRI) scanner. Preliminary results about the polarized ^3He performance in the pellets will be presented in this talk.

Jie Liu
University of Virginia

Date submitted: 08 Oct 2016