PROSPECT: The Precision Reactor Oscillation and Spectrum Experiment

JAMES MATTA, Oak Ridge National Laboratory

The PROSPECT experiment is designed to probe short-baseline neutrino oscillations and precisely measure the 235U reactor antineutrino spectrum. Using a ~4-ton segmented 6Li-loaded liquid scintillator detector, PROSPECT will probe the sterile neutrino best fit region to 4σ within one year of operation at distances of 7-12 meters from the High Flux Isotope Reactor (HFIR). Additionally, the measurement of the 235U spectrum at $4.5\%/\sqrt{E}$ will address the 4-6MeV spectral bump observed in recent measurements by the θ_{13} experiments. This talk will discuss the design, experimental program, backgrounds, and discovery potential of PROSPECT.

1This material is based upon work supported by the U.S. Department of Energy Office of Science, High Energy Physics and under Cooperative Research and Development Agreement (CRADA) NFE-17-06899 between Yale University and UT-Battelle, LLC.

2on behalf of the PROSPECT collaboration