SES19-2019-000062

Abstract for an Invited Paper for the SES19 Meeting of the American Physical Society

Status of the JLab Eta Factory (JEF) experiment¹ SIMON TAYLOR, Jefferson Lab

The JLab Eta Factory (JEF) experiment is an approved experiment in Hall D at Jefferson Lab that focuses on decays of η mesons produced in the reaction $\gamma p \to p\eta$ with emphasis on the rare $\eta \to \pi^0 \gamma \gamma$ channel. In addition to providing a rare window into higher-order chiral perturbation theory, this channel can be used to search for evidence of dark matter. A potential extension to the Standard Model posits a dark gauge boson *B* that couples predominately with quarks and can be observed in the $\eta \to \gamma B$, $B \to \pi^0 \gamma$ channel². The same set of final state particles can also be used to look for a scalar dark matter mediator *S* in the $\eta \to \pi^0 S$, $S \to \gamma \gamma$ channel³. In order to achieve the requisite resolution to clearly identify these rare channels, this experiment calls for an upgrade to the existing GlueX equipment, which is a fixed target apparatus based on a 2-Tesla solenoid magnet (which enables reconstruction of the momentum of the recoil proton). Neutral particles emerging after the interaction of the photon beam with a liquid hydrogen target are detected in the forward direction in the Forward Calorimeter (FCAL), an array of lead glass blocks. We plan to replace the ~80×80 cm² region of the FCAL closest to the beam line with an array of $2 \times 2 \times 20$ cm³ lead tungstate crystals. The current status of the JEF project will be presented.

¹This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177.

²S. Tulin, Phys. Rev. D **89**, no. 11, 114008 (2014).

³B. Batell, A. Freitas, A. Ismail and D. McKeen, arXiv:1812.05103 [hep-ph].