Abstract Submitted for the SES21 Meeting of The American Physical Society

Differential cross-section measurements of ¹⁸O(g,n)+¹⁸O(g,2n) reactions at 23.7 and 32.0 MeV¹ COLLIN MALONE, Duke University — Photoneutron reactions on ¹⁸O allow examination of the neutron-neutron (nn) interaction and may be used as a surrogate for planning a ³H photodisintegration experiment at TUNL. The relatively large $^{18}O(\gamma,2n)$ cross section allows measurements of differential cross-sections for nn coincidences at various opening angles between the neutrons without risks associated with handling a radioactive gas target. Cross sections for the sequential and simultaneous emission of the two neutrons in the ${}^{18}\mathrm{O}(\gamma,$ nn) reaction are measured. The simultaneous neutron emission provides information about neutron-neutron correlations in the ¹⁸O nucleus. Ab-initio calculations are needed to disentangle the simultaneous contribution from the aggregate cross section. The measurements were performed at $HI\gamma S$ using a 23.7 and 32.0 MeV circularly polarized photon beam. Neutrons were detected using 30 liquid scintillator detectors at reaction angles of 65, 90, and 180. Neutron energies were determined using time-of-flight techniques. These are the first differential cross-section data for $^{18}O(\gamma,n)$ and $^{18}O(\gamma,2n)$. A description of experimental techniques and preliminary results will be presented.

¹Work supported by DOE grant DE-FG02-97ER41033

Collin Malone Duke University

Date submitted: 30 Sep 2021 Electronic form version 1.4