Abstract Submitted for the SES21 Meeting of The American Physical Society

Synthesis, magnetic and transport properties of new ternary silicide EuPd₃Si₂.¹ SHIVANI SHARMA, MASOUD MARDANI, KEKE FANG, KAYA WEI, RYAN BAUMBACH, THEO SIEGRIST, National High Magnetic Field Laboratory — More than a hundred ternary borides, gallides and silicides are known which crystallize with a great variety of structure types which can be derived from the hexagonal CaCu₅ type (hexagonal, P6/mmm). However, till today, none of the ternary silicide is reported being formed using Pd and Eu. We have recently synthesized single crystals and powder sample of the new phase EuPd₃Si₂. Single crystal data confirms that EuPd₃Si₂ crystallizes in orthorhombic symmetry with space group Imma (pseudohexagonal) at room temperature. The lattice parameters are a = 7.1463(3), b = 10.0711(4), c = 5.7469(2) Å. The energy dispersive X-ray spectroscopy measurements on the polycrystalline pellet further confirm the stoichiometry to be EuPd₃Si₂. Bulk magnetization and specific heat measurements have been performed on single crystals, indicating ferromagnetic order at a temperature T_C of 78 K. A metamagnetic transition is observed near 5 K in both the magnetization and specific heat data, and resistance measurements on single crystal sample also exhibit a signature at T_C , consistent with magnetic long-range order.

¹We would like to acknowledge National Science Foundation (DMR-1644779 and DMR- 1625780) and the State of Florida.

Shivani Sharma National High Magnetic Field Laboratory

Date submitted: 30 Sep 2021 Electronic form version 1.4