Abstract Submitted for the SES21 Meeting of The American Physical Society

Surface pinning effect and emergent magnetic properties in biphase iron oxide nanorods¹ SUPUN B ATTANAYAKE, AMIT CHANDA, University of South Florida, RAJA DAS, Phenikaa University, MANH-HUONG PHAN, HARIHARAN SRIKANTH, University of South Florida — Over the years, iron oxide (Fe_3O_4) nanorods (NRs) have been investigated for advanced magnetic hyperthermia, and spintronics applications. Here we propose a unique approach in creating a novel class of bi-phase (BP) iron oxide NRs. We demonstrate the formation of $Fe_3O_4 + \alpha - Fe_2O_3$ BP NRs through a controlled annealing process. Hydrothermally grown Fe_3O_4 NRs were annealed at $250^{\circ}C$ for different periods (1-9h) to form $Fe_3O_4 + \alpha - Fe_2O_3 BP$ structures. Magnetometry measurements indicate the sharpening of the Verwey transition with the increment of the annealing duration, leading to the improved crystallinity of the Fe_3O_4 phase. Compared to the as-synthesized, the annealed NRs have a reduced saturation magnetization (M_S) owing to reduced volume fraction of Fe_3O_4 and concomitant formation of the antiferromagnetic α - Fe_2O_3 phase. With 5h of annealing a sharp drop in magnetization is observed due to Morin transition around 260K associated to α -Fe₂O₃ phase. The presence of canted/disordered spins at the phase boundary between the Fe₃O₄ and α -Fe₂O₃ phases can be observed as the NRs are cooled down in 1T field from room temperature. With these observations the $Fe_3O_4 + \alpha$ - Fe_2O_3 BP NRs would be an excellent model system for probing interfacial nanomagnetism.

¹Department of Energy

Supun B Attanayake University of South Florida

Date submitted: 30 Sep 2021

Electronic form version 1.4