Liquid-solid phase transition of benzene under shock compression studied by nanosecond time-resolved nonlinear Raman spectroscopy

KAZUTAKA NAKAMURA, AKITAKA MATSUDA, KEN-ICHI KONDO, Tokyo Institute of Technology — Phase transition of benzene has been studied under laser-shock compression up to 4.2 GPa by using nanosecond time-resolved nonlinear Raman spectroscopy. The shock wave is generated by irradiation of 10-ns pulsed laser beam on the plasma confinement target and its pressure is estimated from a particle velocity, which is measured by a velocity interferometer system. Higher frequency shifts in the ring-breathing mode of benzene are observed under shock compression. The shift at pressures below 3.0 GPa agrees well with that of liquid benzene under static compression. A metastable supercooled state and a liquid-solid phase transition are observed at shock pressures above 3.0 GPa. Time-resolved Raman spectra reveal that the liquid state is initially a metastable state and rapidly transforms to the solid state under shock compression at 4.2 GPa. Rapid nucleation and growth occurs within 20 ns.

Kazutaka Nakamura
Tokyo Institute of Technology

Date submitted: 06 Apr 2005