A Rate-Dependent Damage Model and its Application to Uniaxial Strain

MARTIN N. RAFTENBERG, MICHAEL A. GRINFELD, U.S. Army Research Laboratory — Our analysis is based on a damage model discussed in [1] in which the internal energy density W depends on strain \mathbf{E} and damage $\kappa: W(\mathbf{E}, \kappa) = \phi(\kappa) \mu \left(\frac{\nu}{2(1-\nu)} E_{kk} E_{ll} + E_{ij} E_{ij} \right)$; μ is elastic shear modulus, ν is Poisson’s ratio. The factor $\phi(\kappa) = 1 - (1 - \phi_{\text{min}}) \frac{\kappa}{\kappa_{\text{max}}}$ describes degradation of elastic modulus due to damage; ϕ_{min} and κ_{max} are material constants. The system of evolution includes

\[
\rho \frac{\partial^2 \mathbf{u}}{\partial t^2} = \nabla \frac{\partial W}{\partial \mathbf{E}}, \quad \frac{\partial \kappa}{\partial t} = -K \frac{\partial W}{\partial \kappa}
\]

where K is (for now) a material constant. The above model was installed into LS-DYNA using the User Material Interface. The model was applied to a finite-element simulation of a rod under uniaxial strain, with a prescribed-velocity boundary condition at one end and a stress-free condition at the other. The resulting initial-value boundary-value problem was scaled to reveal the presence of the dimensionless group

\[
\Pi = \frac{\rho_0}{2} \sqrt{\frac{(1-2\nu)\rho_0}{2(1-\nu)}} \frac{(1-\phi_{\text{min}})K}{\kappa_{\text{max}}^2} L \cdot \dot{u}_0^2,
\]

where ρ_0 is the material density, L is the length of the rod, and \dot{u}_0 is the prescribed velocity. Solutions were obtained for a range of Π values. The progression of contours of $\kappa(x,t)$ was observed. [1] Grinfeld, M.A., and Wright, T.W., Metallurgical and Materials Transactions A, Vol. 35A, 2651-2661, 2004.

Martin N. Raftenberg
U.S. Army Research Laboratory

Date submitted: 07 Apr 2005

Electronic form version 1.4