Impulse Absorption by Tapered Alignments of Elastic Spheres

ROBERT DONEY, U.S. Army Research Laboratory, SURAJIT SEN, Dept. Physics; SUNY Buffalo — A numerical parametric study of 1D granular systems with Hertzian spheres is investigated. The relevant and always-repulsive interaction potential is nonlinearly dependent upon the overlap of adjacent grains. Specifically, we report our extensive investigation of two distinct systems and provide hard-sphere approximations as well as results from the numerical solution to the equations of motion. Chains can be characterized by the number of grains, \(N \), the successive decrease in particle size or tapering, \(q \), and restitutive losses, \(\omega \). By increasing the tapering, these chains act as shock absorbers by converting well-defined pulses into noise and spreading the energy among all members in the chain.

Robert Doney
U.S. Army Research Laboratory

Date submitted: 08 Apr 2005