Metal Particle Heating and Acceleration in Condensed Explosives

ROBERT RIPLEY, Martec Limited, FAN ZHANG, DRDC Suffield, FUESANG LIEN, University of Waterloo — For condensed explosives containing metal particle additives, a characteristic parameter relating the detonation reaction zone length \(L_r\) to the particle size \(d_p\) can be defined as \(\delta = d_p/L_r\). The detonation reaction zone length is typically \(0.01 < L_r < 100\) mm, whereas metal particle sizes of \(100\) nm < \(d_p\) < \(1\) mm can be employed. This indicates a potential range of \(10^{-6} < \delta < 10^2\). The limiting case of \(\delta \ll 1\) involves frozen shock/particle interaction; for \(\delta \gg 1\) the interaction consists of a thin-detonation-front diffraction followed by expanding products flow. The intermediate case of \(\delta \approx 1\) has been studied previously as a function of metal mass fraction and particle packing to determine momentum and heat transfer during the detonation interaction time. Results indicate a strong dependence of particle acceleration and heating rate on \(\delta\) for high metal mass fraction conditions. The present study employs 3D mesoscale simulation to further conduct parametric studies in the \(0.1 \leq \delta \leq 10\) range by varying the particle diameter, particle metal and explosive material. The results are quantified to determine macroscopic physical models for particle acceleration and heating.