Phase Transformations of Graphite at Shock-Wave Loading in Steel Targets with Conic Cavities1 ANDREY ZHUK, JIHT RAS, ALEXANDER CHARAKHCHYAN, Dorodnicyn Computing Center RAS, VLADIMIR MLYAVSKIY, KONSTANTIN KHISHCHENKO, DMITRIY ZHERNOKLETOV, TATIANA BORODINA, GEORGIY VALIANO, IHED of JIHT RAS — Phase transformations of graphite with various densities and microstructure at shock-wave loading in steel targets with conic cavities were studied. Graphite GMZ ($\rho=1.70$ g/cc), MPG-7 ($\rho=1.91$ g/cc) and MF-307 ($\rho=2.01$ g/cc) were used in the experiments. The recovered specimens were studied by means X-ray phase analysis. The maximal degree of graphite-diamond transformation having a place in the experiments was estimated. Experimental data were compared to results of 2D numerical modeling. The detailed description of the numerical methods is presented in [1]. We have found that with growth of a degree of three-dimensional regularity and a size of crystal grains of graphite, transition onset pressure and speed of phase transformation falls. [1] V.V. Milyavskii, V.E. Fortov, A.A. Frolova, K.V. Khishchenko, A.A. Charakhchyan, L.V. Shurshalov, Comp. Math. & Math. Phys. 46 (2006) 873.

1The work was supported by RFBR.

Andrey Zhuk
JIHT RAS

Date submitted: 22 Feb 2007
Electronic form version 1.4