Modeling Dynamic Ductility: An Equation of State for Porous Metals

JEFFREY COLVIN, UC/Lawrence Livermore National Laboratory — Enhanced heating from shock compression of a porous material can potentially suppress or delay cracking of the material on subsequent expansion. In this presentation we quantify the expected enhanced heating in an experiment in which a sector of a thin cylindrical shell is driven from the inside surface by SEMTEX HE (peak pressure \(~21.5\) GPa). We first show the derivation of an analytical equation of state (EOS) for porous metals, then discuss the coupling of this EOS with material elastic-plastic response in a 2D hydrocode, and then discuss the modeling of the HE experiment with both fully dense and 10\% porous Ta and a Bi/Ta composite. Finally, we compare our modeling with some recent experimental data.

1This work was conducted under the auspices of the U.S. Department of Energy by the University of California Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.