Shock Initiation Experiments on PBX 9501 Explosive at Pressures Below 3 GPa with Associated Ignition and Growth Modeling

STEVEN K. CHIDESTER, DARLA G. THOMPSON, KEVIN S. VANDERSALL, DEANNE J. IDAR, CRAIG M. TARVER, FRANK GARCIA, PAUL A. URTIEW, LAWRENCE LIVERMORE NATIONAL LABORATORY COLLABORATION, LOS ALAMOS NATIONAL LABORATORY COLLABORATION — Shock initiation experiments on the explosive PBX 9501 (95% HMX, 2.5% estane, and 2.5% nitroplasticizer by weight) were performed at pressures below 3 GPa to obtain in-situ pressure gauge data, run-distance-to-detonation thresholds, and Ignition and Growth modeling parameters. A 101 mm diameter propellant driven gas gun was utilized to initiate the PBX 9501 explosive with manganin piezoresistive pressure gauge packages placed between sample slices. The run-distance-to-detonation points on the Pop-plot for these experiments showed agreement with previously published data and Ignition and Growth modeling parameters were obtained with a good fit to the experimental data. This parameter set will allow accurate code predictions to be calculated for safety scenarios in the low-pressure regime (below 3 GPa) involving PBX 9501 explosive. This work was performed under the auspices of the U. S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

Kevin Vandersall
Lawrence Livermore National Laboratory

Date submitted: 26 Feb 2007