Constitutive Model Constants for Low Carbon Steels from Tension and Torsion Data

NACHHATTER BRAR, University of Dayton Research Institute, Dayton, OH, VASANT JOSHI, Naval Surface Warfare Center, Indian Head, MD, BRYAN HARRIS, University of Dayton Research Institute — Low carbon C1010 steel is characterized under tension and torsion to determine Johnson-Cook (J-C) strength model constants. Constitutive model constants are required as input to computer codes to simulate projectile (fragment) impact on structural components made of this material. J-C model constants (A, B, n, C, and m) for the alloy are determined from tension and torsion stress-strain data. Tension tests are performed at a strain rate of \(\sim 1/s \) at room temperature. Tests at high strain rates are performed at high temperatures to 750\(^\circ\)C. J-C strength model constants determined from these data are: A=367 MPa, B=700 MPa, n=0.935, C=0.045, and m=0.643. Similar values for other low carbon steels (1006, 1008, and 1020) are compared. Torsion tests at quasi-static and high strain rates are performed at room and high temperatures. J-C model constants are evaluated from equivalent tensile stress-strain data obtained from torsion data using von Mises flow rule. These constants are compared to those determined from directly measured tensile data.

1Supported by the US Naval EOD Tech. Div., Indian Head, MD.

Nachhatter Brar
University of Dayton Research Institute, Dayton, OH